PhD El secreto de las leguminosas: compuestos fenólicos y sus beneficios para la salud
DOI:
https://doi.org/10.59741/agraria.v22i3.657Palabras clave:
Antioxidantes, Antiinflamatorios, Enfermedades crónicas, Alimentos funcionales, Microbiota intestinal, Nutrición sostenible, Péptidos bioactivos, GerminaciónResumen
Las leguminosas como los frijoles, lentejas y garbanzos son tesoros nutricionales esenciales a nivel global. Su riqueza en fibra, proteína vegetal y compuestos antioxidantes las convierte en aliadas clave para la salud. Este artículo de revisión se centra en el papel de los compuestos fenólicos (flavonoides, ácidos fenólicos y taninos) como principales responsables de las propiedades funcionales de estos alimentos. Estos compuestos actúan como potentes antioxidantes y antiinflamatorios, contribuyendo a la prevención de enfermedades crónicas como padecimientos cardiovasculares, diabetes y ciertos tipos de cáncer. Su mecanismo de acción incluye la reducción del estrés oxidativo y la modulación de la respuesta inmune, la microbiota intestinal y la regulación de la presión arterial y el colesterol. En conclusión, el consumo de leguminosas es una estrategia efectiva y sostenible para mejorar la salud general y la calidad de vida, más allá de su valor nutricional básico.
Descargas
Referencias
Apea-Bah, F., Drawbridge, P., & Beta, T. (2022). A Generalized Method for Determining Free Soluble Phenolic Acid Composition and Antioxidant Capacity of Cereals and Legumes.. Journal of visualized experiments : JoVE, 184. https://doi.org/10.3791/62467. DOI: https://doi.org/10.3791/62467
Arispuro, M. D. M. D. (2017). TESIS (Doctoral dissertation, Universidad Autónoma de Sinaloa).
Báidez, A., Gómez, P., Del Río, J., & Ortuño, A. (2007). Dysfunctionality of the xylem in Olea europaea L. Plants associated with the infection process by Verticillium dahliae Kleb. Role of phenolic compounds in plant defense mechanism.. Journal of agricultural and food chemistry, 55 9, 3373-7 . https://doi.org/10.1021/JF063166D. DOI: https://doi.org/10.1021/jf063166d
Bhattacharya, A., Sood, P., & Citovsky, V. (2010). The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection.. Molecular plant pathology, 11 5, 705-19 . https://doi.org/10.1111/j.1364-3703.2010.00625.x. DOI: https://doi.org/10.1111/j.1364-3703.2010.00625.x
c, F., Capuano, E., Sagratini, G., & Pellegrini, N. (2019). A comprehensive investigation of the behaviour of phenolic compounds in legumes during domestic cooking and in vitro digestion.. Food chemistry, 285, 458-467 . https://doi.org/10.1016/j.foodchem.2019.01.148. DOI: https://doi.org/10.1016/j.foodchem.2019.01.148
Caretto, S., Linsalata, V., Colella, G., Mita, G., & Lattanzio, V. (2015). Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress. International Journal of Molecular Sciences, 16, 26378 - 26394. https://doi.org/10.3390/ijms161125967. DOI: https://doi.org/10.3390/ijms161125967
Cid-Gallegos, M., Sánchez-Chino, X., Chairez, M., González, I., Madrigal-Bujaidar, E., & Jiménez‐Martínez, C. (2020). Anticarcinogenic Activity of Phenolic Compounds from Sprouted Legumes. Food Reviews International, 38, 18 - 33. https://doi.org/10.1080/87559129.2020.1840581. DOI: https://doi.org/10.1080/87559129.2020.1840581
Daza Fandiño, D. C. (2023). Ecología química y su aplicación potencial en el manejo forestal sostenible.
De Camargo, A., Favero, B., Morzelle, M., Franchin, M., Álvarez-Parrilla, E., De La Rosa, L., Geraldi, M., Júnior, M., Shahidi, F., & Schwember, A. (2019). Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20112644. DOI: https://doi.org/10.3390/ijms20112644
Doyle, J., & Luckow, M. (2003). The Rest of the Iceberg. Legume Diversity and Evolution in a Phylogenetic Context1. Plant Physiology, 131, 900 - 910. https://doi.org/10.1104/pp.102.018150. DOI: https://doi.org/10.1104/pp.102.018150
Garcés-Rimón, M., Morales, D., & Miguel-Castro, M. (2022). Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients, 14. https://doi.org/10.3390/nu14245271. DOI: https://doi.org/10.3390/nu14245271
García-Mora, P., Frías, J., Peñas, E., Zieliński, H., Giménez‐Bastida, J., Wiczkowski, W., Zielinska, D., & Martínez-Villaluenga, C. (2015). Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. Journal of Functional Foods, 18, 319-332. https://doi.org/10.1016/J.JFF.2015.07.010. DOI: https://doi.org/10.1016/j.jff.2015.07.010
Khang, D., Dũng, T., Elzaawely, A., & Xuan, T. (2016). Phenolic Profiles and Antioxidant Activity of Germinated Legumes. Foods, 5. https://doi.org/10.3390/foods5020027. DOI: https://doi.org/10.3390/foods5020027
Kulbat, K. (2016). The role of phenolic compounds in plant resistance. , 80, 97-108.
Kumar, S., & Pandey, G. (2020). Biofortification of pulses and legumes to enhance nutrition. Heliyon, 6. https://doi.org/10.1016/j.heliyon.2020.e03682. DOI: https://doi.org/10.1016/j.heliyon.2020.e03682
López-Amorós, M., Hernández, T., & Estrella, I. (2006). Effect of germination on legume phenolic compounds and their antioxidant activity. Journal of Food Composition and Analysis, 19, 277-283. https://doi.org/10.1016/J.JFCA.2004.06.012. DOI: https://doi.org/10.1016/j.jfca.2004.06.012
Magalhães, S., Taveira, M., Cabrita, A., Fonseca, A., Valentão, P., & Andrade, P. (2017). European marketable grain legume seeds: Further insight into phenolic compounds profiles.. Food chemistry, 215, 177-84 . https://doi.org/10.1016/j.foodchem.2016.07.152. DOI: https://doi.org/10.1016/j.foodchem.2016.07.152
Maleki, S., Crespo, J., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids.. Food chemistry, 299, 125124 . https://doi.org/10.1016/j.foodchem.2019.125124. DOI: https://doi.org/10.1016/j.foodchem.2019.125124
Martineau-Côté, D., Achouri, A., Karboune, S., & L'Hocine, L. (2022). Faba Bean: An Untapped Source of Quality Plant Proteins and Bioactives. Nutrients, 14. https://doi.org/10.3390/nu14081541. DOI: https://doi.org/10.3390/nu14081541
Matemu, A., Nakamura, S., & Katayama, S. (2021). Health Benefits of Antioxidative Peptides Derived from Legume Proteins with a High Amino Acid Score. Antioxidants, 10. https://doi.org/10.3390/antiox10020316. DOI: https://doi.org/10.3390/antiox10020316
Mazur, W., Duke, J., Wähälä, K., Rasku, S., & Adlercreutz, H. (1998). Isoflavonoids and Lignans in Legumes: Nutritional and Health Aspects in Humans 1 1 The method develo. Journal of Nutritional Biochemistry. https://doi.org/10.1016/S0955-2863(97)00184-8. DOI: https://doi.org/10.1016/S0955-2863(97)00184-8
Messina, M. (1999). Legumes and soybeans: overview of their nutritional profiles and health effects.. The American journal of clinical nutrition, 70 3 Suppl, 439S-450S . https://doi.org/10.1093/ajcn/70.3.439s. DOI: https://doi.org/10.1093/ajcn/70.3.439s
Misra, D., Dutta, W., Jha, G., & Ray, P. (2023). Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus. Agronomy. https://doi.org/10.3390/agronomy13020280. DOI: https://doi.org/10.3390/agronomy13020280
Moran, J., Klucas, R., Grayer, R., Abian, J., & Becana, M. (1997). Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties.. Free radical biology & medicine, 22 5, 861-70 . https://doi.org/10.1016/S0891-5849(96)00426-1. DOI: https://doi.org/10.1016/S0891-5849(96)00426-1
Nithiyanantham, S., Selvakumar, S., & Siddhuraju, P. (2012). Total phenolic content and antioxidant activity of two different solvent extracts from raw and processed legumes, Cicer arietinum L. and Pisum sativum L.. Journal of Food Composition and Analysis, 27, 52-60. https://doi.org/10.1016/J.JFCA.2012.04.003. DOI: https://doi.org/10.1016/j.jfca.2012.04.003
Pei, R., Liu, X., & Bolling, B. (2020). Flavonoids and gut health.. Current opinion in biotechnology, 61, 153-159 . https://doi.org/10.1016/j.copbio.2019.12.018. DOI: https://doi.org/10.1016/j.copbio.2019.12.018
Rashad, Y., Aseel, D., & Hammad, S. (2020). Phenolic Compounds Against Fungal and Viral Plant Diseases. , 201-219. https://doi.org/10.1007/978-981-15-4890-1_9. DOI: https://doi.org/10.1007/978-981-15-4890-1_9
Reyes-Díaz, A., Del‐Toro‐Sánchez, C., Rodríguez-Figueroa, J., Valdéz-Hurtado, S., Wong-Corral, F., Borboa‐Flores, J., González-Osuna, M., Perez-Perez, L., & González-Vega, R. (2019). Legume Proteins As A Promising Source Of Anti-Inflammatory Peptides.. Current protein & peptide science. https://doi.org/10.2174/1389203720666190430110647. DOI: https://doi.org/10.2174/1389203720666190430110647
Sang, S., Landberg, R., Agah, S., Kim, H., Mertens-Talcott, S., & Awika, J. (2017). Complementary cereals and legumes for health: Synergistic interaction of sorghum flavones and cowpea flavonols against LPS‐induced inflammation in colonic myofibroblasts. Molecular Nutrition & Food Research, 61, &NA;. https://doi.org/10.1002/mnfr.201600625. DOI: https://doi.org/10.1002/mnfr.201600625
Serventi, L., & Dsouza, L. (2020). Bioactives in Legumes. , 139-153. https://doi.org/10.1007/978-3-030-42468-8_10. DOI: https://doi.org/10.1007/978-3-030-42468-8_10
Sibul, F., Orčić, D., Vasić, M., Anačkov, G., Nađpal, J., Savić, A., & Mimica-Dukić, N. (2016). Phenolic profile, antioxidant and anti-inflammatory potential of herb and root extracts of seven selected legumes. Industrial Crops and Products, 83, 641-653. https://doi.org/10.1016/J.INDCROP.2015.12.057. DOI: https://doi.org/10.1016/j.indcrop.2015.12.057
Singh, B., Singh, J., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review.. Food research international, 101, 1-16 . https://doi.org/10.1016/j.foodres.2017.09.026. DOI: https://doi.org/10.1016/j.foodres.2017.09.026
Spanou, C., Veskoukis, A., Kerasioti, T., Kontou, M., Angelis, A., Aligiannis, N., Skaltsounis, A., & Kouretas, D. (2012). Flavonoid Glycosides Isolated from Unique Legume Plant Extracts as Novel Inhibitors of Xanthine Oxidase. PLoS ONE, 7. https://doi.org/10.1371/journal.pone.0032214. DOI: https://doi.org/10.1371/journal.pone.0032214
Tawalbeh, D., Al-U’datt, M., Ahmad, W., Ahmad, F., & Sarbon, N. (2023). Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules, 28. https://doi.org/10.3390/molecules28062423. DOI: https://doi.org/10.3390/molecules28062423
Wallis, C., & Galarneau, E. (2020). Phenolic Compound Induction in Plant-Microbe and Plant-Insect Interactions: A Meta-Analysis. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.580753. DOI: https://doi.org/10.3389/fpls.2020.580753
Wang, Q., Liu, J., & Zhu, H. (2018). Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00313. DOI: https://doi.org/10.3389/fpls.2018.00313
Yang, J., Lan, L., Jin, Y., Yu, N., Wang, D., & Wang, E. (2021). Mechanisms underlying legume-rhizobium symbiose.. Journal of integrative plant biology. https://doi.org/10.1111/jipb.13207. DOI: https://doi.org/10.1111/jipb.13207
Yao, Y., Cheng, X., Wang, L., Wang, S., & Ren, G. (2011). Biological Potential of Sixteen Legumes in China. International Journal of Molecular Sciences, 12, 7048 - 7058. https://doi.org/10.3390/ijms12107048. DOI: https://doi.org/10.3390/ijms12107048
Zhang, Y., & Chang, S. (2019). Comparative studies on ACE inhibition, degree of hydrolysis, antioxidant property and phenolic acid composition of hydrolysates derived from simulated in vitro gastrointestinal proteolysis of three thermally treated legumes.. Food chemistry, 281, 154-162 . https://doi.org/10.1016/j.foodchem.2018.12.090. DOI: https://doi.org/10.1016/j.foodchem.2018.12.090
Zhu, L., Li, W., Deng, Z., Li, H., & Zhang, B. (2020). The Composition and Antioxidant Activity of Bound Phenolics in Three Legumes, and Their Metabolism and Bioaccessibility of Gastrointestinal Tract. Foods, 9. https://doi.org/10.3390/foods9121816. DOI: https://doi.org/10.3390/foods9121816
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Universidad Autónoma Agraria Antonio Narro

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Cómo citar
PLUMX Metrics