Metabolitos secundarios en tejido de nogal pecanero dañado por el barrenador ambrosial (Euplatypus segnis Chapuis) y hongos asociados

Autores/as

  • Ramón Alvidrez-Villarreal Departamento de Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Colonia Buenavista, 25315, Saltillo, Coahuila, México.
  • Francisco Daniel Hernández-Castillo Departamento de Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Colonia Buenavista, 25315, Saltillo, Coahuila, México.
  • Oswaldo García-Martínez Departamento de Parasitología Agrícola, Universidad Autónoma Agraria Antonio Narro, Colonia Buenavista, 25315, Saltillo, Coahuila, México.
  • Rosalinda Mendoza-Villarreal Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro https://orcid.org/0000-0002-0600-4358
  • Raúl Rodríguez-Herrera Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Blvd. V. Carranza y José Cárdenas s/n, C.P. 25000, Saltillo, Coah., México. https://orcid.org/0000-0002-6428-4925
  • Cristóbal Noé Aguilar-González Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Blvd. V. Carranza y José Cárdenas s/n, C.P. 25000, Saltillo, Coah., México.

DOI:

https://doi.org/10.59741/agraria.v7i1-2-3.434

Palabras clave:

Carya illinoensis, barrenador ambrosial, caracterización, identificación

Resumen

El insecto barrenador ambrosial Euplatypus segnis Chapuis esta asociado a Fusarium solani, Fusarium oxysporum, Alternaria alternata y Botryodiplodia theobromae los cuales provocan muerte regresiva en nogal pecanero [Carya illinoinensis (Wangenh.)]. En algunas regiones del norte de México se han llegado a estimar pérdidas de más del 20 % en la producción, por esta combinación de insectos y hongos fitopatógenos. Asimismo se ha observado que algunos árboles logran sobrevivir con, y sin, tratamiento químico. El objetivo de este estudio fue determinar algunos de los cambios bioquímicos (contenido de N, proteína cruda, terpenos, taninos condensados e hidrolizables, celulosa, lignina y sílice) que ocurren en los árboles del cultivar Western colonizado por este complejo. Se analizaron tres árboles sanos y tres dañados de tres huertas muestreadas en tres municipios del estado de Coahuila. Para el análisis de las respuestas se utilizó un diseño anidado, se realizó la prueba de comparación de medias con la prueba de Tukey (P<0.05). Los resultados indicaron que el contenido de terpenos, taninos hidrolizables, celulosa, lignina, y sílice aumentaron significativamente en los árboles dañados, en comparación de los sanos, esto permite inferir que estos componentes aumentan como una respuesta química de defensa del nogal pecanero a la invasión del insecto, y a la acción enzimática de los hongos fitopatógenos asociados. 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Alonso, I., Hartley, S.E., Thurlow, M. 2001. Competition between heather and grasses on Scottisch moorlands: Interacting effects of nutrient enrichment and grazing regime. J. Vegetation Sci. 12: 249-260. DOI: https://doi.org/10.2307/3236609

Alvídrez, V. R. 2007. Capacidad patogénica de los hongos aislados del barrenador ambrosial (Euplatypus segnis) (Chapuis) (Coleoptera: Platypodidae) y tejido vegetal del nogal pecanero (Carya illinoensis) Koch y sus metabolitos secundarios. Tesis Postgrado, Universidad Autónoma Agraria Antonio Narro.

Batista, G.F., Campos, M.J., Donizete, S.C., Marcos, G. M. 2005. Resistance induction in wheat plants by sili con and aphids. Sci. Agric. 62: 547-551. DOI: https://doi.org/10.1590/S0103-90162005000600006

Berryman, A.A. 1972. Resistance of conifers to invasion by bark beetle-fungus associations. BioScience 22:598- 602. DOI: https://doi.org/10.2307/1296206

CESAVECO. 2006. Comité estatal de sanidad vegetal del estado de Coahuila. Boletín, 158.

Coronel, E. O. 1994. Fundamentos de las propiedades físicas y mecánicas de las maderas. Primera Parte. Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero, Argentina. p.13-28.

Cowan, M. 1999. Plant products as antimicrobial agents. Clinical Microbiol. Rev. 10, 564-5 DOI: https://doi.org/10.1128/CMR.12.4.564

Christiansen, E. Fjone, G. 1993. Pruning enhances the sus ceptibility of Picea abies to infection by the bark beetle transmitted bluestain fungus, Ophiostoma polonicum. Scand. J. For. Res. 8(82): 235-245. DOI: https://doi.org/10.1080/02827589309382773

Cvikrova, M., Mala J., Hrubcova, M , Eder, J. 2006. Soluble and cell wall-bound phenolics and lignin in Ascocalyx abietina infected Norway spruces. Plant Sci. 170 563– 570. DOI: https://doi.org/10.1016/j.plantsci.2005.10.011

Encinas, O., Velásquez, J. Rojas, L. 2000. Applications of biopreservatives from naturally durable woods in the preservation of caribbean pine. Documento impreso. ULA. 62p.

Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 641-664. DOI: https://doi.org/10.1146/annurev.arplant.50.1.641

Eyles, A., Davies, N. W., Mohammed, C. 2003. Wound wood formation in Eucalyptus globulus and Euca lyptus nitens: anatomy and chemistry. Can. J. For. Res. 33(12): 2331–2339 DOI: https://doi.org/10.1139/x03-149

Fengel, D., Wegener, G. 1984. “Wood Chemistry, Ultraestructure Reaction”, Walter de Gruytier, Berlín, Germany. pp: 2-220. DOI: https://doi.org/10.1515/9783110839654

González-Laredo, R. F. 1996. Preservación de madera con taninos. Madera y Bosques 2(2): 67-73 67. DOI: https://doi.org/10.21829/myb.1996.221387

Hietala, A.M., Kvaalen, H., Schmidt, A., Jøhnk, N., Solheim, H., Fossdal, C.G. 2004. Temporal and spa tial profiles of chitinase expression by Norway spruce in response to bark colonization by Heterobasidion annosum. Appl. Environmen. Microbiol. 70: 3948– 3953. DOI: https://doi.org/10.1128/AEM.70.7.3948-3953.2004

Honorato-Salazar, J. A., Hernández-Pérez, J. 1998. Determinación de componentes químicos de la madera de cinco especies de encino del Estado de Puebla. Madera y Bosques 4(2): 79-93. DOI: https://doi.org/10.21829/myb.1998.421361

Howard, L. R., Talcott, S. T., Brenes, C. H., Villalon, B. 2000. Changes in phytochemical and antioxidant activ ity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 48, 1713- 1720. DOI: https://doi.org/10.1021/jf990916t

Kessler, A., Baldwin, T. 2001. Defensive function of her bivore-induced plant volatile emission in nature. Sci ence 291: 2141-2144. DOI: https://doi.org/10.1126/science.291.5511.2141

Klepzig, D. D., Smalley, E. B., Raffa, K. F. 1996. Com bined chemical defenses against an insect-fungal com plex. J. Chem. Ecol. 22 (8): 1367-1388. DOI: https://doi.org/10.1007/BF02027719

Lombardi-Boccia, G., Lucarini, M., Lanzi, S., Aguzzi, A., Capelloni, M. 2004. Nutrients and antioxidant molecules in yellow plums (Prunus domestica L.) from conven tional and organic productions: a comparative study. J. Agric. Food Chem. 52, 90-94 DOI: https://doi.org/10.1021/jf0344690

Mattson, W.J. Jr. 1980. Herbivory in relation to plant ni trogen content. Annu. Rev. Ecol. Syst. 11: 119-161. Morita, S., Yasaki, Y. Johnson, G.C. 2001. Mycelium DOI: https://doi.org/10.1146/annurev.es.11.110180.001003

growth promotion by water extractives from inner bark of radiate pine (Pinus radiata, Don.). Holzforschung 55(2): 155-158. DOI: https://doi.org/10.1515/HF.2001.025

Muñoz-Concha, D., Vogel H. y Razmilic I. 2004. Varia tion of chemical compounds in leaves of Drimys spp. (Magnoliophyta: Winteraceae) populations in Chile. Rev. Chil. Hist. Nat. 77: 43-50. DOI: https://doi.org/10.4067/S0716-078X2004000100005

Nagy, N.E., Fossdal, C.G., Krokene P, Krekling T., Lønneborg A., Solheim H. 2004. Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiol. 24: 505–515. DOI: https://doi.org/10.1093/treephys/24.5.505

Nicholson, R.L., Hammerschmidt, R.1992. Phenolic com pounds and their role in disease resistance. Annu. Rev. Phytopathol. 30: 369-389. DOI: https://doi.org/10.1146/annurev.py.30.090192.002101

Phelan, P.L., Mason, J.F., Stinner, B. R. 1995. Soil fertility management and host preference by European borer. Ecosyst. Environ. 56; 1-8 DOI: https://doi.org/10.1016/0167-8809(95)00640-0

Quero, G. E. 2007. Silicio en la protección de las plantas. División de Investigación, Instituto Tecnológico Superior de Uruapan. Protección y Nutrición de Hortalizas y Frutas. 5 (26)

Rocha, B.V., Nobuo, A.S.2001. Avalicao dos taninos da casca de Eucalyptus grandis W. Hill Ex Maiden como preservativo de madeira. Rev. Arvore 25(2): 245-256.

Semiz, G., Heijari, J., Isik, K., Holopainen, J.K. 2007. Varia tion in needle terpenoids among Pinus sylvestris L (Pinaceae) provenances from Turkey. Biochem. Syst. Ecol. 35: 652-661. DOI: https://doi.org/10.1016/j.bse.2007.05.013

Simard, M., Rioux D., y Laflamme, G. 2001. Formation of Ligno-Suberized Tissues in Jack Pine Resistant to the European Race of Gremmeniella abietina. Biochem. Cell Biol. 91 (12): 1128-1140. DOI: https://doi.org/10.1094/PHYTO.2001.91.12.1128

Singh, A.P. Kim, Y.S., 1997. Biodegradation of wood in wet environments: a review. The International Research Group of Wood Preservation. Document No. IRG/WP 97-10217.

Thompson, A., Cooper, J., Ingram, L.L. 2006. Distribution of terpenes in heartwood and sapwood of loblolly pine. Forest Prod. J. 56:7-8.

Torres, R. A. Chacón E., Armas S. Espinoza F. 2005. Efecto de los patrones de siembra sobre la producción de proteína cruda en bancos de Leucaena leucocephala (Lam) de Wit. Zootecnia Trop. 23(1):27- 38.

Trapp, S. Croteau, R., 2001, Defensive Resin Biosynthe sis in Conifers. Annu. Rev. Plant Biol. 52: 689-724. Van F. K. Beardmore, T. 2004. Current status and envi ronmental impact of transgenic forest trees. Can. J. For. Res. 1163-1180. DOI: https://doi.org/10.1139/x04-024

Van Soest, P. J. and R. H. Wine. 1988. Determination of lignin, cellulose and silice in Acid-Detergent Fiber with Permanganate. 5Assoc. OfficialAnnals Chem. 51: 780. DOI: https://doi.org/10.1093/jaoac/51.4.780

Vázquez, L., A. Pérez, F., L. Díaz S., R. 2007. Biomoléculas con actividad insecticida: una alternativea para mejorar la seguridad alimentaria. Cienc. Tecnol. Aliment. 5(4) 306-313. DOI: https://doi.org/10.1080/11358120709487705

Ventura-Sobrevilla, J. M. 2006. Biodegradación de taninos presentes en extractos de gobernadora (Larrea tridentata Cov.) y hojasen (Fluorencia cernua D.C.) mediante fermentación en estado sólido usando As pergillus niger PSH. Tesis de Maestría en Ciencia del Departamento de Investigación en Alimentos de la Facultad de Ciencias Químicas de la Universidad Autónoma de Coahuila. Saltillo, Coahuila, México.

Vivanco, J. M., Cosio, E., Loyola-Vargas, V. M. Flores, H. E. 2005. Mecanismos químicos de defensa en las plantas. Investigación y Ciencia 10 (8) 68-75.

Wainhouse, D., Ashburner R., Ward, E. Boswell, R. 1998. The Effect of Lignin and Bark Wounding on Suscepti bility of Spruce Trees to Dendroctonus micans. J. Chem. Ecol. 24 (9)

Wainhouse, D. Cross, D. J. and Howell, R. S. 1990. The role of lignin as a defence against the spruce bark beetle Dendroctonus micans: effect on larvae and adults. Oecologia 85 (2) DOI: https://doi.org/10.1007/BF00319411

Wilcox, W.W. 1978. Review of the literature on the ef fects of early stages of decay on wood strength. Wood and Fiber 9:252–257.

Zwenger, S. y Basu, C. 2008. Plant terpenoids: applica tions and future potentials. Biotechnol. Molecular Biol. Rev. 3 (1): 1-7.

Descargas

Publicado

15-12-2010

Número

Sección

Artículos de divulgación

Cómo citar

Metabolitos secundarios en tejido de nogal pecanero dañado por el barrenador ambrosial (Euplatypus segnis Chapuis) y hongos asociados. (2010). Agraria, 7(1-2-3), 26-33. https://doi.org/10.59741/agraria.v7i1-2-3.434

Artículos similares

1-10 de 41

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a