Calidad fisiológica de semilla de coquia (Kochia scoparia (L.) Roth) a diferentes niveles de salinidad con KCl
DOI:
https://doi.org/10.59741/agraria.v8i3.461Keywords:
Kochia scoparia (L.) Roth, forage crops, aridAbstract
Physiological Quality of Kochia (Kochia scoparia (L.) Roth) Seed under Different KCl Salinity Levels. The demand for improved seeds for the establishment of forage crop grasslands have increased in recent years. However, the limited availability, low yields, and poor seed quality have made it a difficult task. The aim of this study was to evaluate the effect of different salinity levels of KCl solutions on seed physiological quality of kochia (Kochia scoparia (L.) Roth). The work was conducted under laboratory and greenhouse conditions, using Kochia seed harvested and packed in 2007. The evaluated treatments for both conditions were six saline solutions of KCl, equivalent to 0, 5, 10, 15, 20, 25 and 30 ds m-1, besides the witness with distilled water. The variables studied were Germination capacity of its components: Normal plants (PN), Abnormal plants (PA), Non-germinated seeds (SSG), Vigor, Speed germination index (IVG), Speed of emergence index (EVI), Average hypocotyl length (LMH) Average radicle length (LMR) and Seedling dry weight (PSP). A completely randomized design was applied and data were analyzed using the software SAS, Ver. 6.0. The witness showed the best germination capacity (P<0.01), with the highest percentage of PN, and the lowest of PA and the least amount of SSG. The amount of PN was directly proportional to the level of salinity, and PA, and SSG amounts were inversely proportional. The witness showed, also, the highest values in IVG, PC, LMH and LMR, so it may be concluded that, in both environments, increasing salinity levels of KCl solutions directly affects the germination and vigor of kochia seed, since the amount of non-germinated seeds and abnormal seedlings are increased. A salinity level of 5 and 10 ds m-1 can increase the length of the seedlings hypocotyl ensuring the rapid establishment of them as a crop.
Downloads
References
Abbad, A., A. El Hadrami, and A. Benchaabane. 2004. Germination responses of the Mediterranean saltbush (Atriplex halimus L.) to NaCl treatment. J. Agron. 3 (2): 111-114. DOI: https://doi.org/10.3923/ja.2004.111.114
Al Ahmadi, J.M. and M. Kafi. 2008. Kochia (Kochia scoparia): to be or not to be? In: Crop and Forage Pro duction Using Saline Waters. (Eds.): M. Kafi and M. Ajmal Khan. NAM S&T Centre, Daya Publisher, New Delhi. pp. 119-162.
Almasoum, A.A. 2000. Effect of planting depth on growth and productivity of tomatoes using drip irrigation with semi saline water. Acta Hort. 537: 773-778. DOI: https://doi.org/10.17660/ActaHortic.2000.537.92
Anaya, G.M. 1993. Kochia: A new alternative for forage under high salinity conditions of Mexico. H. Lieth A. Al. Masoom (Eds.): Towards the rational use of high salinity tolerant plants. Vol. 1. Kluwer Academic Pub lishers. pp: 459-464. DOI: https://doi.org/10.1007/978-94-011-1858-3_47
Árgetel L.; L.M. González, y R. Plana. 2006. Efecto de altas concentraciones salinas sobre la germinación y el crecimiento del Trigo (Triticum aestivum) variedad CUBA-C-204. Rev. Cult. Trop. 27 (3): 45-48.
Basnayake, J., M. Cooper, M. Ludlow and R. Henkell. 1994. Combining ability variation for osmotic adjustment among a selected range of grain sorghum (Sorghum bi color (L) Moench). Field Crops Res. 38:147-155. DOI: https://doi.org/10.1016/0378-4290(94)90086-8
Bazzigalupi, O., M.S. Pistorale y N.A. Andrés. 2008. Tolerancia a la salinidad durante la germinación de semillas provenientes de poblaciones naturalizadas de agropiro alargado (Thinopyrum ponticum) Cien. Inv. Agr. 35 (3): 277-285. DOI: https://doi.org/10.4067/S0718-16202008000300005
Cavalcante, A. e S. Pérez. 1995. Efeitos dos estresses hídrico e salino sobre a germinação de sementes de Leucaena leucocephala (Lam.) de Witt. Pesq. Agrop. Bras. 30 (2): 281-289.
CONAZA. 1991. Establecimiento de Kochia scoparia (L.) Roth. Mimeo. Saltillo, Coah., México. 23 p. Cuartero F. y R. Fernández-Muñoz. 1999. Tomato and salinity. Scient. Horticult. 78: 83-125. DOI: https://doi.org/10.1016/S0304-4238(98)00191-5
Da Silva, R., N. Fernandes Lopes, D. Munt de Moraes, A. De Almeida Pereira, and G. Loureiro Duarte. 2007. Physiological quality of barley seeds submitted to sa line stress. Rev. Bras. Sem. 29 (1): 40-44. DOI: https://doi.org/10.1590/S0101-31222007000100006
Daubenmire, R. 1990. Ecología Vegetal: Tratado de Autoecología de Plantas. Limusa, México, D.F. 496 p. Durham, R. and J. Durham. 1983. Technique for inten sive “Kochia” grazing and intensive use of cotton waste products. J. Anim. Sci. 57 (1): 391-395.
Everitt, J., M. Alaniz and J. Lee., 1983. Seed germination characteristics of Kochia scoparia L. J. Range Man age. 36 (5): 646. DOI: https://doi.org/10.2307/3898360
Fanti, S. e S. Pérez. 2004. Processo germinativo de sementes de paineira sob estresses hídrico e salino. Pesq. Agrop. Bras. 39 (9): 903-909. DOI: https://doi.org/10.1590/S0100-204X2004000900010
Galitzer, S.J. and F.W. Oehme. 1979. Studies on the com parative toxicity of Kochia scoparia (L.) Schrad (fireweed). Toxicol. Lett. 3: 43-49. DOI: https://doi.org/10.1016/0378-4274(79)90105-X
Glenn, E.P., W.E. Coates, J.J. Riley, R.O. Kuehl and R.S. Swingle. 1992. Salicornia bigelovii Torr.: a seawater irrigated forage for goats. An. Feed Sci. Technol. 40: 21-30. DOI: https://doi.org/10.1016/0377-8401(92)90109-J
Graetz, RD and A.D. Wilson. 1980. Comparison of the diets of sheep and cattle grazing a semi-arid chenopod shrubland. Aust. Rangel. J. 2: 67-75. DOI: https://doi.org/10.1071/RJ9800067
Hopkins, D.L. and A. Nicholson. 1999. Meat quality of wether lambs grazed on either saltbush (Atriplex nummularia) plus supplements or lucerne (Medicago sativa). Meat Sci. 51: 91-95. DOI: https://doi.org/10.1016/S0309-1740(98)00105-3
Jaradat, A. A., M. Shahid, and A. Al-Maskri. 2004. Ge netic diversity in the Batini Barley Landrace from Oman: II. Response to salinity stress. Crop Sci. 44: 007-1007. DOI: https://doi.org/10.2135/cropsci2004.9970
Jeannette S. B. J., R. Craig and J.P. Lynch. 2002. Salinity tolerance of phaseolus species during germination and early seedling growth. Crop Sci. 42: 1584-1504. DOI: https://doi.org/10.2135/cropsci2002.1584
Kraidees, M.S., M.A. Abouheif, M.Y. Al-Saiady, A. Tag Eldin and H. Metwally. 1998. The effect of dietary in clusion of halophyte Salicornia bigelovii Torr on growth performance and carcass characteristics of lambs. An. Feed Sci. Technol. 76: 149-159. DOI: https://doi.org/10.1016/S0377-8401(98)00191-6
Marai, I.F.M., A.A. Habeeb and T.H. Kamal. 1995. Re sponse of livestock to excess sodium intake. In: So dium in agriculture, (Ed.): C.J.C. Phillips and PC Chiy. Chalcombe Publications, Canterbury, pp. 173-180.
Mullinex, W. 1998. Kochia (Kochia spp.) biology outline and bibliography. http://www.agron.iastate.edu/ ~weeds/WeedBiolLibrary/kochiabiblio.html.
Musito R.N.; S.M.C. Vega y V.J.G. Rodríguez. 2004. Genotipos de maíz tolerantes a salinidad; un estudio preliminar para iniciar un programa de selección. Rev. Agraria Nueva Época. 1: 18-23. DOI: https://doi.org/10.59741/agraria.v1i3.296
Nawaz, S. and S.H. Hanjra. 1993. The productivity of goats using different ratios of saltbush and kallar grass. In: Productive use of saline land (Ed.): N. Davidson and R. Galloway. Australian Centre for International Agri cultural Research Proceedings No. 42, pp. 85-87.
Porta, C.; R. López-Acevedo y De L. Roquero. 1999. Edafología para la Agricultura y el Medio Ambiente. Mundi-Prensa. MAD, España. 807 p.
Ramos, J. C., G.M. Perreta, C.J. Tivano y C.A. Vegetti. 2004. Variaciones anatómicas en la raíz de Pappophorum philippianum inducidas por salinidad. Rev. Int. Bot. Exp.: 103-109.
Romero-Aranda, R., T. Soria, J. Cuartero. 2001. Tomato plant-water uptake and plant-water relationships un der saline growth conditions. Plant Science 160: 265- 272. DOI: https://doi.org/10.1016/S0168-9452(00)00388-5
SAS Institute Inc. 1989. SAS/STAT User‘ s Guide. Ver sion 6, Fourth Edition. SAS Institute Inc., Cary, N.C. Steppuhn, H. and K. Wall. 1993. Kochia scoparia L. emer gence from saline soil under various water regimes. J. Range Manage. 46 (6): 533-538. DOI: https://doi.org/10.2307/4002867
Swingle, R.S., E.P. Glenn and V. Squires. 1996. Growth performance of lambs fed mixed diets containing halo phyte ingredients. An. Feed Sci. Technol. 63: 137-148. DOI: https://doi.org/10.1016/S0377-8401(96)01018-8
Thomas, D.T., A.J. Rintoul and D.G. Masters. 2007. Sheep select combinations of high and low sodium chloride, energy and crude protein feed that improve their diet. Animal Beh. Sci., 105:140-153. DOI: https://doi.org/10.1016/j.applanim.2006.05.015
Walker, D.J., B.J. Potter and G.B. Jones. 1971. Modifica tion of carcass characteristics in sheep maintained on a saline water regime. Aust. J. Exp. Agric. Animal Husb., 11: 14-17. DOI: https://doi.org/10.1071/EA9710014
Wilson, J.R. and P.M. Kennedy. 1996. Plant and animal constraints to voluntary feed intake associated with fi ber characteristics and particle breakdown and passage in ruminants. Aust. J. Agric. Res., 47: 199-226. DOI: https://doi.org/10.1071/AR9960199
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
PLUMX Metrics