Effect of different salinity levels in the germination and vigor of seeds of five forage grasses
DOI:
https://doi.org/10.59741/agraria.v9i1.466Keywords:
Cenchrus ciliarís, Brachiaria brizantha, Chloris gayana, Brachiaria hibrido, Panicum maximumAbstract
Salinity causes serious problems that affect grasslands, reduc ing the availability of animal feed in arid and semiarid zones, as it requires the evaluation of genotypes tolerant and resistant to salt stress. The aim of this study was to evaluate the effect of different salinity levels with KCl in the capacity of germination and seed vigor of five forage grasses. The research was conducted in laboratory and greenhouse at the Universidad Autonoma Agraria Antonio Narro at Buenavista, Saltillo, Coah., Mexico, located at 25° 23 ' N and 103º 01' W, at an altitude of 1743 m. We used seeds of five species of forage grasses: Buffelgrass (Cenchrus ciliaris L.), Rhodes grass (Chloris gayana L.), palisade grass (Brachiaria brizantha), Brachiaria hybrid cv. Mulato II and Pani cum maximum Jacq cv. Tanzania. The treatments evaluated in both conditions were salinity using six concentrations of KCl: 0, 5, 10, 15, 20 and 25 dS / m, was used distilled water as control. The variables evaluated were: ability to germinate with vigor tests, germination rate index, speed of emergence index, aver age length of plumule, average radicle length and seedling dry weight. We used a completely randomized design with factorial arrangement with four replications. The results indicate that there are significant differences between species in the variables studied in the two environments. It was found that increasing salt concentrations, it directly affected the germination and vigor, thus obtaining a greater number of ungerminated seeds and abnormal seedlings. It is concluded that salt-tolerant species in germination and vigor are Tanzania and Brizantha.
Downloads
References
Almasoum, A. A. 2000. Effect of planting depth on growth and productivity of tomatoes using drip irrigation with semi saline water. Acta Hort. (537): 773-778. DOI: https://doi.org/10.17660/ActaHortic.2000.537.92
Argetel, L., González, L. M. y Plana, R. 2006. Efecto de altas concentraciones salinas sobre la germinación y el crecimiento del Trigo (Triticum aestivum) variedad CUBA-C-204. Rev. Cult. Trop. 27 (3): 45-48.
Basnayake, J., Cooper, M., Ludlow, M., Henkell, R. 1994. Combining ability variation for osmotic adjustment among a selected range of grain sorghum (Sorghum bicolor (L.) Moench). Field Crops Res. (38): 147-155. DOI: https://doi.org/10.1016/0378-4290(94)90086-8
Bazzigalupi, O., Pistorale, M. S. y Andrés, N. A. 2008. Tolerancia a la salinidad durante la germinación de semillas provenientes de poblaciones naturalizadas de agropiro alargado (Thinopyrum ponticum) Cien. Inv. Agr. 35(3): 277-285. DOI: https://doi.org/10.4067/S0718-16202008000300005
Cuartero, J., Fernández-Muñoz, R. 1999. Tomato and sa linity. Sci. Horticult. (78): 83-125. DOI: https://doi.org/10.1016/S0304-4238(98)00191-5
Da Silva, R., Fernandes Lopes, N., Munt de Moraes, D., De Almeida Pereira, A. y Loureiro Duarte. G. 2007. Physiological quality of barley seeds submitted to sa line stress. Rev. Bras. Sem. 29(1): 40-44. DOI: https://doi.org/10.1590/S0101-31222007000100006
El-Kharbotly, A., O. Mahgoub, A. Al-Subhi and A. Al Halhali, 2003. Indigenous grass species with potential for maintaining rangeland and livestock feeding in Oman. Agric. Ecosyst. Environ. 95: 623-627. DOI: https://doi.org/10.1016/S0167-8809(02)00179-2
Epstein, E., J.D. Norlyn, D.W. Rush, R.W. Kinsbury, D.B. Kelly, G.A. Gunningham and A.F. Wrona, 1980. Saline culture of crops: A genetic approach. Sci. 210: 399-404. DOI: https://doi.org/10.1126/science.210.4468.399
FAO. 2000. Global Network on Integrated Soil Manage ment for Sustainable Use of Salt-AffectedSoils. Re trieved from: http://ww w.fao.org/ag/agl/agll/spush/ topic2.htm#iran
Fanti, S. y Pérez, S. 2004. Processo germinativo de sementes de paineira sob estresses hídrico e salino. Pesq. Agropecu. Bras. 39(9): 903-909. DOI: https://doi.org/10.1590/S0100-204X2004000900010
Flowers, T.J.; A.R. Yeo, 1995. Breeding for salinity Rattan, L.A., 1998. Seed technology. LTD. Oxford, New resis tance in crop plants. Aust. J. Plant Physiol., 22: 875- 884. DOI: https://doi.org/10.1071/PP9950875
Hardegree, S.P. and W.E. Emmerich, 1990. Partitioning water potential and specific salt effects on seed germi nation of four grasses. Ann. Bot. 66: 587-595. DOI: https://doi.org/10.1093/oxfordjournals.aob.a088068
Jaradat, A. A., M. Shahid; A. Al-Maskri. 2004. Genetic diversity in the Batini Barley Landrace from Oman: II. Response to salinity stress. Crop Sci. (44): 007-1007. DOI: https://doi.org/10.2135/cropsci2004.9970
Jeannette, S. B. J., R. Craig; J. P. Lynch. 2002. Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Sci. (42):1584-1504. DOI: https://doi.org/10.2135/cropsci2002.1584
Kefu, Z., F. Hai, I.A. Ungar, 2002. Survey of halophyte species in China. Plant Sci., 163(3), 491–498. Luque, A.A. and F.T. Bingham, 1981. the effect of the os motic potential and specific ion concentration of the nutrient Solution on the uptake and reduction of ni trate by barley seedlings. J. Plant and Soil 2: 227-237. Munns, R., 2002. Comparative physiology of salt and wa ter stress. Plant Cell Environ. 25, 239–250. DOI: https://doi.org/10.1016/S0168-9452(02)00160-7
Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167(3): 645-660. DOI: https://doi.org/10.1111/j.1469-8137.2005.01487.x
Musito, R. N., Vega S. M. C. y Rodríguez V. J. G. 2004. Genotipos de maíz tolerantes a salinidad; un estudio preliminar para iniciar un programa de selección. Agraria Nueva Época1(3):18-23. DOI: https://doi.org/10.59741/agraria.v1i3.296
Nedjimi, B. 2009. Salt tolerance strategies of Lygeum spartum L.: A new fodder crop for Algerian saline steppes. Flora 204: 747-754. DOI: https://doi.org/10.1016/j.flora.2008.11.004
Ramos, J. C., Perreta, G. M., Tivano, C. J. y Vegetti, C. A. 2004. Variaciones anatómicas en la raíz de Pappophorum philippianum inducidas por salinidad. Rev. Int. Bot Exp. 103-109.
Redmann, R.E., 1974. Osmotic and specific ion effects on the germination of alfalfa. Can. J. Bot. 52: 803-808. Rhoades, J.D., J. Loveday, 1990. Salinity in irrigated agri culture. pp.1089–1142, In: Irrigation of agricultural crops. Eds. B.A. Stewart, D.R. Nielsen, Monograph, ASA, Madison, WI. DOI: https://doi.org/10.1139/b74-104
Romero-Aranda, R., Soria, T., Cuartero, J. 2001. Tomato plant-water uptake and plant-water relationships un der saline growth conditions. Plant Sci. (160): 265-272. Chile. DOI: https://doi.org/10.1016/S0168-9452(00)00388-5
SAS, Institute Inc. 1989. SAS/STAT User` s Guide. Ver sion 6, Fourth Edition. Volume 2, Cary, NC, USA. Shokohifard, G., K.H. Sakagam; S. Matsumoto, 1989. Ef
fect of amending materials on growth of radish plant in salinized soil. J. Plant Nutr. 12: 1195-1294. Singh, K. N., Chatrath, R. 2001. Salinity Tolerance, Chap ter 8. pp: 101-111. In: Application of Physiology in Wheat Breeding. M.P., J.I. Ortiz-Monasterio, and A. McNab (eds.). Mexico, D.F.: CIMMYT.
Tobe, K., X. Li and K. Omasa, 2002. Effects of sodium, magnesium and calcium salts on salts on seed germi nation and radicle survival of a halophyte, Kalidium capsicum (Chenopo-diaceae). Australiant J. Bot. 50: 163-169. DOI: https://doi.org/10.1071/BT01065
Tsonev, T.D., G.N. Lazova, Z.G. Stoinova and L.P. Popova, 1998. A Possible Role Jasmonic Acid in Adaptation of Barley seedlings to Salinity Stress. J. Plant Growth Regulation, 3: 153-159. DOI: https://doi.org/10.1007/PL00007029
Ye, Y., Tan, N., Lu, Ch. and Wog, Y. 2005. Effects of salin ity on germination, seedling growth and physiology of three salt-secreting mangrove species. Aq. Bot. 83(3): 193-205. DOI: https://doi.org/10.1016/j.aquabot.2005.06.006
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
PLUMX Metrics